jueves, 16 de junio de 2011

Svante August Arrhenius

(Uppsala, 1859 - Estocolmo, 1927) Físico y químico sueco. Perteneciente a una familia de granjeros, su padre fue administrador y agrimensor de una explotación agrícola.
Cursó sus estudios en la Universidad de Uppsala, donde se doctoró en 1884 con una tesis que versaba sobre la conducción eléctrica de las disoluciones electrolíticas, donde expuso el germen de su teoría según la cual las moléculas de los electrólitos se disocian en dos o más iones, y que la fuerza de un ácido o una base está en relación directa con su capacidad de disociación.

Svante August Arrhenius
Esta teoría fue fuertemente criticada por sus profesores y compañeros, quienes concedieron a su trabajo la mínima calificación posible. Sin embargo, los grandes popes de la química extranjera, como Ostwald, Boltzmann y van't Hoff apreciaron justamente su teoría, y le ofrecieron su apoyo y algún que otro contrato, con lo que su prestigio fue creciendo en su propio país. La elaboración total de su teoría le supuso cinco años de estudios, durante los cuales sus compañeros fueron aceptando los resultados.
Fue profesor de física en la Universidad de Uppsala (1884), en el Real Instituto de Tecnología de Estocolmo (1891), rector de la universidad de Estocolmo y director del Instituto Nobel de fisicoquímica (1905), cargo este último creado especialmente para él.
Gran hombre de ciencia, su trabajo abarcó campos muy dispares entre sí, entre los que destacan una teoría sobre la formación de los cometas basada en la presión de la radiación, una teoría cosmogónica que explicaba la evolución de los astros, una teoría acerca de la inmunología, la primera constatación del efecto invernadero (aumento de la temperatura de la atmósfera debido al aumento en la concentración de dióxido de carbono) y una teoría que fija el origen de la vida en la tierra como consecuencia del transporte a través del espacio y debido a la presión de la radiación de esporas procedentes de regiones remotas del espacio (teoría panespérmica).Estudió también la influencia de la temperatura en las reacciones químicas, donde elaboró la ecuación que lleva su nombre. Por su trabajo en la la ionización de los electrólitos, que permite interpretar las leyes físicas de la electrólisis, le fue concedido en 1902 la prestigiosa medalla Davy de la Royal Society de Londres, en 1903 el premio Nobel de química y en 1911 la medalla Gibbs de los Estados Unidos. Entre sus obras destacan Tratado de física cósmica (1903) yLas teorías de la química, la Tierra y el Universo.

Soren Peter Sorensen

(Havrebjerg, 1868-Copenhague, 1939) Bioquímico danés. Sus estudios sobre acidimetría le condujeron a la introducción del símbolo pH (1909) para indicar la concentración de iones hidrógeno en las disoluciones acuosas de los electrólitos. También estudió las proteínas, las fermentaciones y la síntesis de las aminas ácidas.

Amedeo Avogadro di Quaregna

(Turín, 1776-id., 1856) Químico y físico italiano. Fue catedrático de física en la Universidad de Turín durante dos períodos (1820-1822 y 1834-1850). En sus escritos publicados por el Journal de Physique, Manera de determinar las masas relativas de las moléculas y las proporciones en las que éstas combinan establece la famosa hipótesis de que volúmenes de gases iguales a las mismas condiciones de temperatura y presión, contienen igual número de moléculas. Determinó que los gases simples como el hidrógeno y el oxígeno son diatómicos (H2, O2) y asignó la fórmula (H2O) para el agua. Las leyes de Avogadro resolvieron el conflicto entre la teoría atómica de Dalton y las experiencias de Gay-Lussac. El número de partículas en un «mol» de sustancia fue denominado constante o número de Avogadro en su honor.

Dmitri Ivanovich Mendeléiev

(Tobolsk, actual Rusia, 1834-San Peterburgo, 1907) Químico ruso. Su familia, de la que era el menor de diecisiete hermanos, se vio obligada a emigrar de Siberia a Rusia a causa de la ceguera del padre y de la pérdida del negocio familiar a raíz de un incendio. Su origen siberiano le cerró las puertas de las universidades de Moscú y San Petersburgo, por lo que se formó en el Instituto Pedagógico de esta última ciudad.

Dmitri Mendeléiev
Más tarde se trasladó a Alemania, para ampliar estudios en Heidelberg, donde conoció a los químicos más destacados de la época. A su regreso a Rusia fue nombrado profesor del Instituto Tecnológico de San Petersburgo (1864) y profesor de la universidad (1867), cargo que se vería forzado a abandonar en 1890 por motivos políticos, si bien se le concedió la dirección de la Oficina de Pesos y Medidas (1893).
Entre sus trabajos destacan los estudios acerca de la expansión térmica de los líquidos, el descubrimiento del punto crítico, el estudio de las desviaciones de los gases reales respecto de lo enunciado en la ley de Boyle-Mariotte y una formulación más exacta de la ecuación de estado. En el campo práctico destacan sus grandes contribuciones a las industrias de la sosa y el petróleo de Rusia.
Con todo, su principal logro investigador fue el establecimiento del llamado sistema periódico de los elementos químicos, o tabla periódica, gracias al cual culminó una clasificación definitiva de los citados elementos (1869) y abrió el paso a los grandes avances experimentados por la química en el siglo XX.
Aunque su sistema de clasificación no era el primero que se basaba en propiedades de los elementos químicos, como su valencia, sí incorporaba notables mejoras, como la combinación de los pesos atómicos y las semejanzas entre elementos, o el hecho de reservar espacios en blanco correspondientes a elementos aún no descubiertos como el eka-aluminio o galio (descubierto por Boisbaudran, en 1875), el eka-boro o escandio (Nilson, 1879) y el eka-silicio o germanio (Winkler, 1886).
Mendeléiev demostró, en controversia con químicos de la talla de Chandcourtois, Newlands y L. Meyer, que las propiedades de los elementos químicos son funciones periódicas de sus pesos atómicos. Dio a conocer una primera versión de dicha clasificación en marzo de 1869 y publicó la que sería la definitiva a comienzos de 1871. Mediante la clasificación de los elementos químicos conocidos en su época en función de sus pesos atómicos crecientes, consiguió que aquellos elementos de comportamiento químico similar estuvieran situados en una misma columna vertical, formando un grupo. Además, en este sistema periódico hay menos de diez elementos que ocupan una misma línea horizontal de la tabla. Tal como se evidenciaría más adelante, su tabla se basaba, en efecto, en las propiedades más profundas de la estructura atómica de la materia, ya que las propiedades químicas de los elementos vienen determinadas por los electrones de sus capas externas.
Convencido de la validez de su clasificación, y a fin de lograr que algunos elementos encontrasen acomodo adecuado en la tabla, Mendeléiev «alteró» el valor de su peso atómico considerado correcto hasta entonces, modificaciones que la experimentación confirmó con posterioridad. A tenor de este mismo patrón, predijo la existencia de una serie de elementos, desconocidos en su época, a los que asignó lugares concretos en la tabla.
Pocos años después (1894), con el descubrimiento de ciertos gases nobles (neón, criptón, etc.) en la atmósfera, efectuado por el químico británico William Ramsay (1852-1816), la tabla de Mendeléiev experimentó la última ampliación en una columna, tras lo cual quedó definitivamente establecida.

pauling

(Portland, EE UU, 1901 - Big Sur, id., 1994) Químico estadounidense. Se licenció en ingeniería química el año 1922 en la Universidad Estatal de Oregón, y en 1925 se doctoró en fisicoquímica en el California Institute of Technology de Pasadena. Viajó a Europa, donde colaboró con destacados científicos: Arnold Sommerfeld en Munich, Niels Bohr en Copenhague, Erwin Schrödinger en Zurich y sir William Henry Bragg en Londres. Regresó en 1927 al California Institute of Technology, donde posteriormente fue designado profesor, en 1931. Ocupó el cargo de director del Gates and Crellin Laboratories of Chemistry entre 1936 y 1958.
Fue uno de los primeros en aplicar los principios de la mecánica cuántica para dar explicación a los fenómenos de difracción de los rayos X y logró describir satisfactoriamente las distancias y los ángulos de enlace entre átomos de diversas moléculas. Para describir la capacidad del átomo de carbono para formar cuatro enlaces, Pauling introdujo el concepto de orbitales híbridos, en los cuales las órbitas teóricas descritas por los electrones se desplazan de sus posiciones originales debido a la mutua repulsión.
También identificó la presencia de orbitales híbridos en la coordinación de iones o grupos de iones en disposición definida alrededor de un ion central. Para el caso de compuestos cuya geometría no se puede justificar mediante una única estructura, propuso el modelo de híbridos de resonancia, que contempla la verdadera estructura de la molécula como un estado intermedio entre dos o más estructuras susceptibles de ser dibujadas. Introdujo el concepto empírico de electronegatividad, como medida del poder de atracción de los electrones involucrados en un enlace de carácter covalente por parte de un átomo.
Las teorías de Pauling sobre el enlace atómico se encuentran recogidas en su obra The Nature of Chemical Bond, and the Structure of Molecules and Crystals (1939), uno de los textos científicos que han ejercido mayor influencia a lo largo del siglo XX. En 1940, en colaboración con el biólogo de ascendencia alemana Max Delbrück, desarrolló el concepto de complementariedad molecular en las reacciones antígeno-anticuerpo. Su trabajo junto al químico estadounidense Robert B. Corey le llevó a reconocer la estructura helicoidal de ciertas proteínas.
En 1954 se recompensó su meritoria labor científica con el Premio Nobel de Química. No sería el único que recibiría: por su activa militancia pacifista y su decidida oposición a la proliferación del armamento nuclear le fue concedido el Premio Nobel de la Paz en 1962. En 1979 publicó el estudio Cancer and Vitamin C.

Erwin Schrödinger

(Viena, 1887-id., 1961) Físico austriaco. Compartió el Premio Nobel de Física del año 1933 con Paúl Dirac por su contribución al desarrollo de la mecánica cuántica. Ingresó en 1906 en la Universidad de Viena, en cuyo claustro permaneció, con breves interrupciones, hasta 1920. Sirvió a su patria durante la Primera Guerra Mundial, y luego, en 1921, se trasladó a Zurich, donde residió los seis años siguientes.
En 1926 publicó una serie de artículos que sentaron las bases de la moderna mecánica cuántica ondulatoria, y en los cuales transcribió en derivadas parciales, su célebre ecuación diferencial, que relaciona la energía asociada a una partícula microscópica con la función de onda descrita por dicha partícula. Dedujo este resultado tras adoptar la hipótesis de De Broglie, enunciada en 1924, según la cual la materia y las partículas microscópicas, éstas en especial, son de naturaleza dual y se comportan a la vez como onda y como cuerpo.
Atendiendo a estas circunstancias, la ecuación de Schrödinger arroja como resultado funciones de onda, relacionadas con la probabilidad de que se dé un determinado suceso físico, tal como puede ser una posición específica de un electrón en su órbita alrededor del núcleo.
1927 aceptó la invitación de la Universidad de Berlín para ocupar la cátedra de Max Planck, y allí entró en contacto con algunos de los científicos más distinguidos del momento, entre los que se encontraba Albert Einstein.En 
Permaneció en dicha universidad hasta 1933, momento en que decidió abandonar Alemania ante el auge del nazismo y de la política de persecución sistemática de los judíos. Durante los siete años siguientes residió en diversos países europeos hasta recalar en 1940 en el Dublin Institute for Advanced Studies de Irlanda, donde permaneció hasta 1956, año en el que regresó a Austria como profesor emérito de la Universidad de Viena.